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The uniform flow past a sphere undergoing steady rotation about an axis transverse
to the free stream flow was investigated numerically. The objective was to reveal
the effect of sphere rotation on the characteristics of the vortical wake structure
and on the forces exerted on the sphere. This was achieved by solving the time-
dependent, incompressible Navier–Stokes equations, using an accurate Fourier–
Chebyshev spectral collocation method. Reynolds numbers Re of 100, 250 and
300 were considered, which for a stationary sphere cover the axisymmetric steady,
non-axisymmetric steady and vortex shedding regimes. The study identified wake
transitions that occur over the range of non-dimensional rotational speeds Ω∗ = 0 to
1.00, where Ω∗ is the maximum velocity on the sphere surface normalized by the
free stream velocity. At Re =100, sphere rotation triggers a transition to a steady
double-threaded structure. At Re =250, the wake undergoes a transition to vortex
shedding for Ω∗ � 0.08. With an increasing rotation rate, the recirculating region is
progressively reduced until a further transition to a steady double-threaded wake
structure for Ω∗ � 0.30. At Re = 300, wake shedding is suppressed for Ω∗ � 0.50 via
the same mechanism found at Re =250. For Ω∗ � 0.80, the wake undergoes a further
transition to vortex shedding, through what appears to be a shear layer instability of
the Kelvin–Helmholtz type.

1. Introduction
The sphere is arguably the most basic of three-dimensional geometries and serves

as an excellent prototype for understanding the wake flow of more general bluff
bodies. Engineering applications include combustion processes, particulate transport
processes and atmospheric flows. Torobin & Gauvin (1960), among others, have noted
that in these environments the streamwise rotation of particles is a far less common
occurrence than transverse rotation. In the presence of a convection velocity, particle
collisions with solid boundaries, collisions between particles moving at different
convection velocities and streamwise velocity gradients, are more likely to induce
rotation about an axis perpendicular to the flow direction.

In order to simulate particulate flows, Lagrangian simulation methods, which track
the trajectories of a large number of particles, are often used. Here it is necessary to
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be able to predict the forces to which the particles are exposed. Pan, Tanaka & Tsuji
(2001) noted that data are still lacking for this purpose and were forced to assume a
crude model for the lift force acting on particles in a rotating channel flow simulation.
They stated that ‘the lift force due to rotation of the particle for Reynolds numbers
greater than 1.0 is still an open question.’ Furthermore the particles may not behave
simply as passive scalars but may work to actively modify the surrounding fluid flow.
In some cases, vortex shedding from particles may have a significant effect on the
enhancement of turbulence; so an understanding of the sphere wake structure is also
of interest.

The uniform flow past a transversely rotating sphere is best known for a transverse
aerodynamic force – often referred to as the Magnus effect – which leads to the
deflection of its flight path. Rubinow & Keller (1961), by means of matched asymptotic
expansions, derived an expression for the forces acting on a transversely rotating
sphere for Reynolds numbers less than unity. They found the drag force to be
independent of rotation and equal to the Stokes drag, while the lift force coefficient
varied as CL =2Ω∗. Here Ω∗ = Ωd/2U∞ is the non-dimensional rotation rate; Ω is
the angular velocity; d is the sphere diameter; and U∞ is the free stream velocity
magnitude. You, Qi & Xu (2003) computed the flow field for Re = 0.5 to 68.4 and
Ω∗ = 0 to 5. At Reynolds numbers less than unity, the lift coefficient was found to
be equal to the theoretical value reported by Rubinow & Keller (1961). For a given
rotation rate, increasing the Reynolds number resulted in a monotonic decrease in the
lift coefficient, such that it approached a constant value for Re > 100. Wake patterns
computed for Re = 34.2 showed that increasing the rotation rate gradually reduced
the size of the recirculating wake until it was completely destroyed.

The numerical study of Kurose & Komori (1999) considered 1 � Re � 500 and
0 � Ω∗ � 0.25. At Re = 1 they found a lift coefficient which was significantly
lower than the value derived by Rubinow & Keller (1961) and computed by You
et al. (2003). At higher Reynolds numbers they found that the rotation shifted the
line of separation downstream on the low-pressure side of the sphere and upstream
on the high-pressure side. For situations in which vortex shedding prevailed, the
Strouhal number for vortex shedding was found to increase with an increasing
rotation rate. The lift coefficient increased with the rotation rate. However, for
a given rotation rate, the lift initially decreased with Reynolds number and then
increased until it approached a constant value for Re � 200. The drag coefficient
showed a monotonic increase with increasing rotation rate and decreasing Reynolds
number.

Niazmand & Renksizbulut (2003) computed the flow field for 10 � Re � 300 and
Ω∗ = 0 to 1. For a Reynolds number well below the regular transition for a stationary
sphere (Re ≈ 212), rotation leads to an asymmetric wake, while symmetry is preserved
about a plane normal to the rotation axis. With an increasing rotation rate, the
recirculation zone becomes progressively smaller and is displaced to the high-pressure
side of the sphere. At Re = 100 the wake was found to be suppressed for Ω∗ � 0.5.
At Reynolds numbers approaching the regular transition for a stationary sphere,
rotation can trigger a transition to vortex shedding. At Re = 200, time-periodic vortex
shedding was attained for Ω∗ � 0.5. At Reynolds numbers approaching the Hopf
bifurcation for a stationary sphere, lower rates of rotation are sufficient to trigger the
transition to vortex shedding.

Early experimental investigations focused on relating the Reynolds number and
rotation rate to the forces experienced by the sphere. At high Reynolds numbers,
the sphere may be mounted in a wind tunnel via a spindle and driven by an electric
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motor mounted on a force balance (see for example Maccoll 1928). Tsuji, Morikawa &
Mizuno (1985) emphasise that this method becomes inaccurate at moderate Reynolds
numbers because the lateral force on the sphere is too small to be measured accurately
and the sphere is small in relation to the support mechanism. As a result Tsuji et al.
(1985) and Oesterlé & Dinh (1998) resorted to trajectory techniques, in which the
flight path of a rotating sphere is measured, and the aerodynamic forces are recovered
using momentum conservation equations. Although this avoids the inaccuracies of
direct measurement, it introduces a host of other uncertainties. Tsuji et al. (1985)
considered Re =550 to 1600 and Ω∗ < 0.70. By assuming proportionality between the
lift and rotation rate they found

CL = (0.4 ± 0.1) Ω∗. (1.1)

Oesterlé & Dinh (1998) considered Re =10 to 140 and Ω∗ =1 to 6. A best fit to their
data gave the correlation

CL ≈ 0.45 + (2Ω∗ − 0.45) exp(−0.075(Ω∗)0.4Re0.7). (1.2)

A much-needed experimental study of the wake flow came from Best (1998),
who considered moderate Reynolds numbers in the range Re = 29 to 290 and
rotation rates in the range Ω∗ = 0 to 1.5. Using an oil-filled recirculating channel,
a suspension of fine particles was used for flow visualization and as seeding for
velocity measurements, using laser doppler anemometry. The study considered the
flow field on the two-dimensional streamwise plane normal to the rotation axis. For
all Reynolds numbers considered, the mean wake length became progressively smaller
with increasing rotation rate and ceased to exist when Ω∗ > 0.5. This transition is
congruent with the wake suppression reported in the numerical studies of You et al.
(2003) for Re = 34.2 and by Niazmand & Renksizbulut (2003) for Re =100. For
Ω∗ < 0.5, sphere rotation promoted a transition to unsteady vortex shedding, with
a shedding frequency that was found to be modulated by the rotation rate. For
Ω∗ > 0.5, fluid passing over the low-pressure side was dragged over the sphere lee side
until it met fluid moving downstream over the high-pressure side of the sphere and
was ‘peeled off’ the surface to form a shear layer. Unfortunately the experiment did
not reveal the full three-dimensional nature of the wake.

Although a number of studies have considered the uniform flow past a transversely
rotating sphere at moderate Reynolds numbers, the three-dimensional nature of
the flow field and the mechanisms that drive the various wake transitions has not
been previously explored. In this study, the wake structure of a spherical particle in
steady rotation about an axis transverse to the free stream flow is investigated for
the Reynolds numbers 100, 250 and 300. For a stationary sphere these cover the
axisymmetric steady, non-axisymmetric steady and vortex shedding regimes. Non-
dimensional rotation rates Ω∗ =0 to 1 are considered. The numerical formulation is
based on the schemes employed by Mittal (1999) and Bagchi & Balachandar (2002,
2003), except for the velocity boundary condition on the sphere surface and the details
of the temporal discretisation. A detailed description of the numerical formulation
is presented by Giacobello (2005), while the following section provides only a brief
overview. Details of the wake structure are presented in increasing Reynolds number
order in §§ 3.1–3.3, while the forces are presented in § 3.4.
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Figure 1. Problem geometry and coordinate system. The free stream flow is along the z-axis,
and the sphere is constrained to rotate about the x-axis.

2. Numerical formulation
The fluid motion is fully described by the incompressible Navier–Stokes equations,

which take the form
∂u
∂t

+ u · ∇u = −∇P +
1

Re
∇2u (2.1)

and

∇ · u = 0. (2.2)

Here the Reynolds number, Re, is defined based on the free stream velocity U∞,
the diameter of the sphere d and the kinematic viscosity ν. The static pressure P is
non-dimensionalized by the free stream dynamic pressure ρU 2

∞, where ρ is the fluid
density. Equations (2.1) and (2.2) are solved directly for the primitive variables in a
standard, spherical polar coordinate system, as defined in figure 1. The coordinate
system comprises of a radial r , tangential θ and azimuthal direction φ, where

d/2 � r � Do/2, 0 � θ � π and 0 � φ � 2π. (2.3)

Do is the diameter of the outer boundary of the computational domain. The unit
vectors in the directions (r , θ , φ) are (êr , êθ , êφ). A cartesian coordinate system, (x, y, z),
is also introduced, such that the free stream flow vector is aligned with the positive
z-axis and the sphere is constrained to rotate about the positive x-axis. The force
coefficients in the z-, x- and y-direction are denoted CD , CLx and CLy respectively. To
aid the discussion, the sphere is divided into two hemispheres. The hemisphere over
which the surface velocity has a component in the same direction as the free stream
flow is referred to as the retreating side (y > 0); the hemisphere over which the surface
velocity has a component in the direction opposite to the free stream flow is referred
to as the advancing side (y < 0).

The equations are spatially discretized using a Fourier–Chebyshev collocation
method that employs a restricted double Fourier series in the wall-parallel directions
and a Chebyshev discretization in the wall-normal direction. The number of
collocation points in the radial and tangential directions were Nr = 121 and Nθ =100
respectively. With increasing Re and Ω∗ the number of collocation points in the
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Figure 2. A representative computational grid. The collocation points are defined at the
vertices of the cells.

azimuthal direction Nφ was varied from 16 to 64. For all simulations the outer
boundary of the domain was truncated to Do =45d . A typical computational domain
is presented in figure 2. A sector of the volume has been removed to show the
distribution of collocation points through the domain. The magnified view shows
the clustering of collocation points near the sphere surface and the wake region. The
grid clustering in the near-wall region was tailored to ensure that at least 12 to 15
collocation points reside in the boundary layer, whereas clustering in the θ-direction
was tailored to resolve the high gradients in the wake most efficiently.

The governing equations are time advanced using the fractional-step method
described by Kim & Moin (1985) and a non-dimensional time step of �t∗ = 0.0005.
The method recovers a second-order accurate velocity and pressure field. For all
simulations, the primitive variables were initialized using a potential solution for the
uniform flow past a stationary sphere. At non-dimensional time t∗ = 0, the non-slip
condition was applied to the sphere surface. With the exception of the velocity at
the sphere surface, the initial and boundary conditions are detailed in Bagchi &
Balachandar (2002). For a sphere rotating about the x-axis with a constant angular
speed, the angular velocity vector is

Ω = Ω(sin θ cos φ êr + cos θ cosφ êθ − sinφ êφ), (2.4)

and the surface velocity distribution is

us = Ω ×
(

d

2
êr

)
= −Ωd

2
(sin φ êθ + cos θ cos φ êφ). (2.5)

2.1. Validation

Insensitivity to spatial and temporal resolution was verified for all Reynolds numbers
and rotation rates. Numerous preliminary simulations were undertaken to establish the
most suitable grid parameters. The adequacy of the spatial and temporal resolution
was verified by increasing the grid resolution and reducing the time step. It was
confirmed that important parameters, such as the force coefficients, separation angle
and shedding frequency, changed by less than 1 %. The spatial resolution was
also assessed by transforming the velocity components into wavenumber space and
monitoring the decay of the spectral modes (along the three coordinate directions)
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Figure 3. Instantaneous spectral modes of the spherical velocity components for Re =
300: (a) radial spectrum along (θ, φ) = (0.056π, 0.188π); (b) tangential spectrum along
(r, φ) = (1.92, 0.188π); (c) azimuthal spectrum along (r, θ ) = (1.92, 0.056π).

with respect to the wavenumber. As an example, figure 3 presents instantaneous
spectral modes versus the wavenumber at a grid point in the wake of a stationary
sphere at Re = 300. Similar spectrums were calculated for each combination of r ,
θ and φ, and the grid resolution was judged to be adequate when at least four
to five decades of decay in the expansion coefficients were maintained throughout
the computational domain. A more detailed demonstration of the measures taken
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Figure 4. (a) Separation angle, θS , and (b) wake length, LW , with respect to Re.

to ensure that each simulation was adequately resolved is presented in Giacobello
(2005).

The solver was also validated against a range of experimental and numerical
data for a stationary and rotating sphere in the Reynolds number range of interest.
Here selected examples for a stationary sphere in the axisymmetric steady, non-
axisymmetric steady and vortex shedding regimes are presented. This discussion also
serves as a reference for the case in which sphere rotation is introduced.

In the range Re = 20 to 212, the uniform flow past a stationary sphere remains
axisymmetric and steady and is characterized by a closed recirculating wake which
is toroidal in structure. As the Reynolds number is increased in this regime the
wake length and separation angle grow, while topologically the flow remains similar.
Figure 4 presents the separation angle θS and wake length LW with respect to the
Reynolds number. Both the separation angle and the wake length are measured
relative to the rear stagnation point, and the wake length is normalized by the
sphere diameter. The results show close agreement with the values computed by
Tomboulides & Orszag (2000), and extrapolation of the numerical data indicates
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Figure 5. Vortical structures for a stationary sphere at (a) Re = 250; and (b) Re =300.
Structures are identified using the method of Jeong & Hussain (1995). Dark structures are the
results of Kim & Choi (2002); light grey structures are the results of the present study, using
a threshold value of λ2 = − 8 × 10−4.

separation to initially occur at a Reynolds number of about 20. The separation angles
measured experimentally by Nakamura (1976) are also in close agreement at high
Reynolds numbers but show higher values at the lower Reynolds numbers. The wake
length measurements of Taneda (1956) are in agreement up to a Reynolds number of
about 130. At Reynolds numbers above 130, Taneda (1956) reported faint periodic
oscillations in the recirculating wake and, as noted by Tomboulides & Orszag (2000),
this may be the cause of the discrepancy at higher Reynolds numbers.

Above the regular transition Reynolds number, the wake remains steady, but the
toroidal vortex ring tilts off the streamwise axis. The shift in the vortex structure
results in the azimuthal vorticity generated at the sphere surface having streamwise
components that lead to the formation of two streamwise vorticity tails of equal
strength and opposite signs. Although axisymmetry is lost, the flow field exhibits
a symmetry plane passing between these vortical thread structures. This asymmetry
results in a lateral lift force directed in the plane of symmetry. The wake no longer
forms a closed structure, and fluid becomes entrained from upstream, spirals into the
wake and is released into the two streamwise tails. In figure 5(a) the wake structure
for Re =250, as identified using the methods of Jeong & Hussain (1995), is compared
with that computed by Kim & Choi (2002).

As the Reynolds number is increased in the non-axisymmetric steady regime, the
streamwise vorticity tails strengthen and elongate until the wake undergoes a Hopf
bifurcation at Re ≈ 270. At higher Reynolds numbers planar symmetry is maintained,
while the flow is characterized by the shedding of vortex loops, or hairpin vortices,
at a single frequency. Figure 5(b) presents the instantaneous wake structure for
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Re CD CL St

Present study 250 0.702 0.061
300 0.658 0.067 0.134

Johnson & Patel (1999) 250 0.062
300 0.656 0.069 0.137

Constantinescu & Squires (2000) 250 0.700 0.062
300 0.665 0.065 0.136

Kim & Choi (2002) 250 0.702 0.060
300 0.657 0.067 0.134

Table 1. Comparison with earlier numerical results of the time-averaged drag coefficient CD ,
the lateral force coefficient CL and the Strouhal number St = f d/U∞ where f is the frequency
of vortex shedding.

Re =300. Hairpin vortices are periodically shed from the sphere surface with the
same orientation and sign (labelled A). The one-sided shedding also leads to a net lift
force that acts along the plane of symmetry. There is also the appearance of induced
vortices which are of opposite sign and orientation to those of the vortices shed from
the sphere (labelled B). The induced structures were first observed by Johnson &
Patel (1999), and they argued that they arise from an interaction of the near wake
and the outer flow. Good agreement is evident with the result computed by Kim
& Choi (2002). Table 1 compares the force coefficients and shedding frequencies for
Re =250 and Re = 300 with the numerical results reported by Johnson & Patel (1999),
Constantinescu & Squires (2000) and Kim & Choi (2002). All values computed in
the present study are within 3 % of those computed in these earlier simulations.

3. The flow past a transversely rotating sphere
3.1. Re = 100

Figure 6(a) presents the flow structure at Re = 100 for a number of representative
rotation rates. In this and subsequent figures, the vortex identification method of
Jeong & Hussain (1995) is used, and a threshold value of λ2 = − 8 × 10−4 is chosen.
To indicate length scale, the wake cross-sections are marked at streamwise increments
of �z = 2, starting at z = 0. At this Reynolds number the wake remains steady over
the range of Ω∗ considered. For a stationary sphere, the flow topology comprises a
shroud over the sphere and a torus in the near wake. This wake flow is described
in some detail by Johnson & Patel (1999). The torus in the near wake coincides
with the axisymmetric toroidal wake found at this Reynolds number, while, as noted
by Johnson & Patel (1999), the shroud over the sphere does not coincide with
any apparent vortical structure. However, they showed that in a coordinate system
translating with the local velocity, closed streamline orbits coincide with the position
of the shroud.

The introduction of sphere rotation forces the wake to undergo a transition to a
double-threaded structure, similar to that found for a stationary sphere above the
regular transition (212 < Re < 270). At Ω∗ = 0.05, the double threads exist but are
comparatively weak and are not detected at the threshold value of λ2 presented.
Sphere rotation also distorts the shroud enveloping the sphere, causing it to grow
over the advancing side and diminish over the retreating side of the sphere. With
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Figure 6. (a) Vortical structures and (b) three-dimensional streamline patterns for Re = 100.

increasing Ω∗ the threads become thicker and elongated in the streamwise direction,
indicating an increase in their rotational strength. The threads are also deflected in
the negative y-direction as a result of the induced velocity of one tail on the other.
Momentum conservation indicates that the deflection of the wake is accompanied by
a lift or Magnus force in the positive y-direction.

The corresponding instantaneous streamlines are shown in figure 6(b). For clarity,
only a few streamline paths are shown, and because the flow remains symmetric
about the (y, z)-plane, only x � 0 is considered. For a stationary sphere the wake
streamlines form concentric loops. A separatrix stream surface divides fluid within
the toroidal wake from the outer flow. The introduction of sphere rotation breaks the
flow axisymmetry, and the toroidal wake becomes tilted; however, over the range of
Ω = 0 to 1.00 the flow does maintain a plane of symmetry normal to the rotation axis.
For Ω = 0.025 and 0.05, fluid passing over the retreating side of the sphere is entrained
into the wake and is ejected from the advancing side of the sphere. For convenience,
the foci on the retreating and advancing sides of the wake will be referred to as the
upper and lower foci, respectively; however, it is emphasized that they comprise part
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of a single three-dimensional toroidal structure. Fluid entrained into the wake from
the retreating side spirals towards the stable upper focus and is ejected normal to the
(y, z)-plane from its centre. Fluid then spirals azimuthally around the wake and feeds
the unstable lower focus, before spiralling radially outwards from its centre and being
released into the wake in two streams on either side of the symmetry plane. This
wake structure is similar to that described by Johnson & Patel (1999) for a stationary
sphere above the regular transition.

At Ω∗ = 0.10, the focal structures seen at lower rotation rates lose their spiral
appearance in a stationary reference frame. As the rotation rate is increased further,
the near wake becomes increasingly vectored in the negative y-direction, and fluid
passing over the retreating side remains attached until it meets fluid passing over the
advancing side of the sphere and is ‘peeled off’ to form a shear layer. Sphere rotation
also causes a thin layer of fluid to rotate with the sphere surface (not shown). As
the rotation rate increases this layer of fluid becomes progressively thicker. On the
symmetry plane, the forward separatrix is shifted away from the surface and towards
the advancing side of the sphere.

For Ω∗ = 0.10, the toroidal wake structure is barely discernible, while at the higher
rotation rates it is absent. Both the numerical study of Niazmand & Renksizbulut
(2003) and the experimental study of Best (1998) report the recirculating wake to
be totally absent for Ω∗ � 0.50. At these higher rotation rates, fluid passing over
the retreating side of the sphere is accelerated over the lee side of the sphere in a
contracting band, while fluid passing over the advancing side forms a sheet that curls at
its edges. These motions combine to form a pair of counter-rotating vortical structures,
similar to those found downstream of a finite length wing. It is these counter-rotating
vortical structures that are identified in figure 6(a) as intense streamwise threads.

The existence of a trailing vortex pair is not surprising, since, for a three-dimensional
body that is generating lift, the laws of inviscid vortex motion dictate that trailing
vortices must exist. The presence of a pair of counter-rotating vortical threads has
been previously reported by Maccoll (1928) for a much higher Reynolds number
(Re > 104). Using a three-component pressure gauge, Maccoll measured the time-
averaged flow direction and speed over a number of cross-stream planes downstream
of a sphere mounted in a wind channel. Calculated streamwise vorticity contours
indicated the presence of a pair of vortex cores that were deflected towards the
advancing side of the sphere.

3.2. Re = 250

The effect of sphere rotation on the flow structure at Re = 250 is illustrated in fig-
ure 7. For a stationary sphere, the wake comprises a double-threaded structure, which
has been previously observed in both experiments and numerical simulations. These
tails consist of streamwise vorticity, equal in magnitude and opposite in sign. It is
through these tails that fluid entrained into the near wake is released downstream.
The introduction of sphere rotation causes the tails to become elongated in the
streamwise direction, as was also observed for Re = 100. However, above a critical
value of the rotation rate, the wake undergoes a transition to an unsteady vortex
shedding regime. This transition occurs at approximately Ω∗ = 0.08. Simulation at
this non-dimensional rotation rate shows small amplitude wake oscillations with a
slow decay rate, indicating that the flow is in the vicinity of a bifurcation between a
steady regime and an unsteady regime. In figure 7 the instantaneous wake structure is
presented for t∗ = 256.15. The simulation was continued to t∗ = 600, by which time the
wake settles to a steady double thread. At higher rotation rates, the wake undergoes
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Figure 7. Instantaneous vortical structures for Re =250: (a) and (b) look down on the wake
from the retreating and advancing side of the sphere, respectively.

sustained vortex shedding. In this and subsequent figures that present a periodic
wake, the time instant shown coincides with the lateral lift force being at a local
minimum. With increasing Ω∗, the expansion of the wake in the y-direction increases
before decreasing again, such that for Ω∗ � 0.30 vortex shedding is suppressed, and
the wake reverts to the double-threaded structure. Some waviness is seen in the
streamwise threads for Ω∗ = 0.30, while the wake is steady at higher Ω∗. At this
Reynolds number Niazmand & Renksizbulut (2003) also reported a periodic wake
for Ω∗ > 0.05; however they found this to persist up to the maximum rotation rate
tested (Ω∗ =0.50).
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Figure 8. Instantaneous near-wake streamline patterns on the (y, z)-plane for Re = 250.

Figure 8 presents the near-wake streamline patterns on the symmetry plane for
Re =250. For unsteady cases, the patterns were obtained by numerically integrating
the instantaneous velocity field in pseudo-time. These instantaneous streamlines serve
only to describe the velocity field at an instant in time. It must be recognized that fluid
that appears to be channelled along paths prescribed by the instantaneous streamlines
may at some later instant follow a distinctly different path. The issue of correctly
interpreting streamline patterns in unsteady flows is discussed at length by Steiner
(1984).

For a stationary sphere at Re = 250 (Ω∗ = 0), the wake exists in a steady non-
axisymmetric regime. Although axisymmetry is lost, the wake maintains a plane of
symmetry, which coincides with the (y, z)-plane in the present simulations. This wake
structure has been described in detail by Johnson & Patel (1999). Fluid passing over
the upper side of the sphere is entrained into the wake, encircles the upper focus
and spirals radially inwards towards the centre of the lower stable focus, before
being expelled normal to the plane. It then spirals azimuthally along the vortex
core and feeds into the centre of the unstable upper focus. This entrained fluid then
spirals radially outwards and is sent around the lower focus before being released
downstream.

The introduction of sphere rotation displaces the wake foci towards the negative
y-direction, with the region of circulation around the upper focus becoming
progressively smaller, such that it is absent for Ω∗ � 0.20. At Ω∗ = 0.08 the appearance
of the upper focus changes from topologically stable to unstable. This shift in topology
coincides with a transition to the vortex shedding regime. The circulation region
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Figure 9. Streamline evolution on the (y, z)-plane for Re = 250 and Ω∗ = 0.20.

around the lower focus is also reduced in size for Ω∗ � 0.08, while at Ω∗ = 0.10 it
undergoes a sudden growth that also marks the onset of vortex shedding. Although
vortical structures are continually being shed and convected downstream, spiralling
motion is only visible in the near wake, where the convection velocity is small. Further
downstream, spiralling motions only become visible in a frame of reference translating
at the local flow velocity. At Ω∗ =0.20 the circulation region around the lower focus
is larger still, while the upper focus is absent. It is under these conditions that the
expansion of the wake and the oscillatory amplitude of the force coefficient histories
are found to be at their maximum. For Ω∗ � 0.30, there are no spiralling structures
in the wake, and fluid passing over the lee side of the sphere appears to stay attached
until it meets fluid passing over the advancing side of the sphere and is ‘peeled’ away
from the surface. This transition in the near-wake topology coincides with the onset
of vortex shedding suppression observed in the vortical wake structure presented in
figure 7.

A time sequence of the instantaneous streamline evolution on the (y, z)-plane at
Ω∗ = 0.20 is presented in figure 9. Starting at the time instant at which the lift force
is at a local minimum, the streamline pattern is presented at every quarter period,
for one period (T ). Fluid instantaneously entrained into the wake from the retreating
side is drawn down towards the advancing side of the sphere in a stream contracting
towards the flow symmetry plane. On meeting fluid passing over the advancing side
of the sphere, the fluid turns back on itself and is channelled towards the centre of
the lower stable focus. The fluid is then expelled normal to the symmetry plane and
spirals the wake before being convected downstream. At the next quarter cycle the
lower focus is displaced downstream and appears smaller. At t∗

c = T/2 the lower focus
has detached from the near wake and is convecting downstream. In a reference frame
fixed to the sphere it loses its spiral appearance. Fluid encircling the upper focus is
drawn down to meet fluid passing over the advancing side and forms a shear layer.
At this point, the lift coefficient attains a local maximum, and the drag coefficient is
in the vicinity of a local minimum. The time t∗

c =3T/4 marks the ‘birth’ of a new
lower focus that sits closer to the sphere surface than a mature structure. Overall, the
shedding cycle is one of ‘build-up and release’ of the region of circulation around the
lower focus. Although not shown, a similar cycle is found for other rotation rates at
which vortex shedding prevails.
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Figure 10. Instantaneous vortical structures for Re = 300: (a) and (b) look down on the
wake from the retreating and advancing side of the sphere, respectively.

3.3. Re = 300

The effect of sphere rotation on the flow structure at Re = 300 is presented in figure 10.
The wake undergoes a number of interesting topological transitions over the range of
Ω∗ considered. With increasing Ω∗, the distance between successive wake structures is
progressively reduced, indicating an increase in the vortex shedding Strouhal number.
The size of the induced vortices (labelled B) becomes progressively smaller in relation
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to the primary structures (labelled A) shed from the sphere. The expansion of the wake
in the y-direction initially increases with the rotation rate before decreasing until the
vortex shedding is suppressed in the range 0.50 <Ω∗ < 0.60, when the wake reverts to
a steady double thread. This transition is also observed at Re = 250 but at a slightly
lower value of Ω∗. In this case however, for Ω∗ > 0.60, the wake undergoes a further
transition to a second vortex shedding regime, which to the authors’ knowledge has
not previously been reported for a sphere. For a two-dimensional cylinder at Re = 200,
Mittal & Kumar (2003) found vortex shedding to be suppressed for Ω∗ � 1.91 and
to resume for Ω∗ ≈ 4.4 to 4.8. It is not clear why vortex shedding is suppressed and
resumes at a significantly higher rotation rate for a two-dimensional cylinder.

In the second vortex shedding regime, the wake shows a distinctly different
topology, and the process by which discrete vortical structures are formed and
released downstream appears to be different, suggesting that a different mechanism is
driving the unsteadiness. At Ω∗ = 0.80, the vortex shedding does not originate in the
near wake of the sphere, as is the case at lower Ω∗. The double-threaded structure
extends some distance downstream from the sphere before waviness is observed in
the threads; the threads then tilt and connect to form a compact series of hairpin
structures. As the wake convects downstream, the hairpins are tilted away from the
streamwise direction and assume a more distinct Ω shape. This wake development
resembles the buoyant coflowing wake studied by Perry & Lim (1978) and Perry & Tan
(1984). Oblique Kelvin–Helmholtz-like instabilities develop in the cylindrical vortex
sheet, causing it to develop folds which lead to the formation of one-sided structures
that resemble a daisy chain of interlocking loops. At Ω∗ = 1.00, the formation of the
hairpin structures occurs further upstream; otherwise, the flow topology is similar
to that at Ω∗ = 0.80. It is interesting to note that this second transition to a vortex
shedding regime does not occur for Re =250 and Ω∗ � 1.00, despite the similarities in
the flow structure at lower Ω∗. This raises the question of whether at lower Reynolds
numbers, the transition to the second vortex shedding regime is triggered at a higher
value of Ω∗. To test this possibility further simulations need to be conducted for
Ω∗ > 1.00.

Figure 11 shows the near-wake streamline patterns on the (y, z)-plane for
Re = 300 and a number of representative rotation rates. For a stationary sphere, the
instantaneous streamlines resemble those for a stationary sphere at Re = 250. The
most noticeable difference is that the region of circulation around the lower focus
is larger and sits closer to the sphere. With increasing rotation rate the recirculating
wake region is progressively reduced in a fashion similar to that found for Re = 250.
For Ω∗ � 0.30, all spiralling structures in the wake are absent, and the flow appears
to remain attached to the surface. The progressive reduction in the circulating wake
volume with increasing rotation rate may explain the increase in the vortex shedding
frequency. Intuitively, the build-up and concentration of vorticity should occur at a
faster rate as the volume of the recirculating region is reduced. An increase in the
entrainment of free stream fluid may also drive the shedding cycle at a faster rate.

As the rotation rate is increased further, the fluid passing over the retreating side
of the sphere becomes increasingly vectored in the negative y-direction. Despite the
transition to a second vortex shedding regime for Ω∗ � 0.80, the streamline pattern
is topologically unchanged. Unlike the shedding cycle at lower rotation rates, here
the shedding mechanism is clearly not one of ‘build-up and release’ of vortical
structures from the near wake. Although unsteady spiralling structures exist further
downstream, in a reference frame translating with the sphere they appear merely as a
waviness in the downstream streamlines. To reveal the wake structures (as identified
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Figure 11. Instantaneous near-wake streamline patterns on the (y, z)-plane for Re = 300.

in figure 10), the velocity field must be viewed relative to an observer moving close
to their convection velocity. For a wake flow, the structures develop with streamwise
extent and are not periodic in space; therefore a unique convection velocity does not,
in general, exist. In figure 12 the instantaneous streamline pattern for Ω∗ = 0.80 is
overlayed with greyscale contours of λ2. The velocity of the observer was chosen as the
convection velocity of the vortical structure centred at (x, y, z) = (0, −2.378, 11.554),
at which point the local velocity is (ux, uy, uz) = (0, −0.093, 0.821). The centre of the
structure was assumed to coincide with the local minimum in λ2.

In this chosen reference frame, the streamline pattern reveals a vortex sheet curling
up into a series of stable foci that are separated by saddles. The locations of the
foci coincide with the locations at which the hairpin structures, as identified by the
λ2 definition, intersect the symmetry plane. With downstream distance, the waviness
in the vortex sheet grows until fluid is observed to roll up into foci. At the time
instant shown the initial roll-up of the shear layer is evident near z = 5.0. As the focal
structures are convected downstream they grow and entrain more of the surrounding
fluid.

Above the chain of stable foci, a positive open bifurcation line exists from which
streamlines on either side diverge. The downstream streamline pattern bears a striking
resemblance to the phase-averaged streamline patterns presented by Perry, Lim &
Chong (1980) and Perry & Tan (1984) for a negatively buoyant wake. From continuity
arguments, fluid entrained into the stable foci is ejected from either side of the
symmetry plane, while fluid must converge towards the positive open bifurcation line
from either side of the symmetry plane. Although the experiments of Perry et al.
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Figure 12. Instantaneous streamline pattern for Re = 300 and Ω∗ = 0.80: (a) (y, z)-plane;
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(1980) were limited to field measurements on the flow symmetry plane, continuity
arguments allowed them to conjecture the streamline pattern in a cross-flow plane.
Figure 12(b ) shows the streamline pattern computed from the in-plane velocity vectors
projected onto the cross-flow plane at z = 11.5, together with the contours of λ2. The
plane of interest is indicated in figure 12(a ). The computed streamline pattern is in
agreement with those conjectured by Perry et al. (1980). The bifurcation line apparent
on the symmetry plane forms part of a stream surface, which in the cross-flow plane,
appears as a separatrix streamline. The cross-stream pattern is characterized by a pair
of counter-rotating foci which entrain fluid from below the separatrix streamline and
produce a downwash on the symmetry plane. The cross-flow plane cuts through the
head of a hairpin structure, and as a result the contours of λ2 take a kidney shape.
The streamline pattern is consistent with the formation of trailing vortices.

To gain further insight into the process driving the second transition, figure 13
presents the instantaneous vorticity field on the (y, z)-plane. Since the (y, z)-plane
coincides with the flow symmetry plane only the x-vorticity component is non-zero.
Contours range from −20 to 20 in increments of 0.5, with the dashed lines used to
indicate negative values and the zero contour omitted for clarity. For a stationary
sphere, the shear layer separating from the lower side of the sphere is more intense, and
it is from this side – where vorticity is most concentrated – that vorticity is periodically
discharged downstream. The presence of the toroidal wake, as identified in the near-
wake streamline patterns, is not apparent in the vorticity contours. Vorticity fails to
distinguish between rotation resulting from a swirling motion and rotation due to
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Figure 13. Contours of instantaneous x-vorticity on the (y, z)-plane for Re = 300.

shear, and here the cylindrical shear layer released from the surface is of a sufficient
magnitude to mask the details of the toroidal near wake.

The introduction of sphere rotation increases the surface-to-free stream velocity
gradient over the advancing side of the sphere and decreases it over the retreating
side. This leads to a progressive intensification and thinning of the shear layer
released from the advancing side. As a result, the patches of negative vorticity which
are periodically discharged downstream are noticeably stronger. The shear layer over
the retreating side is weakened and retracts upstream with increasing rotation rate.
It also expands in the y-direction and is drawn down over the lee side of the sphere.
The effect is most pronounced on the (y, z)-plane in which the sphere’s peripheral
velocity is greatest.

For Ω∗ � 0.50, the wake reverts to a steady state, and the vorticity field, on the
plane, is characterized by a thin shear layer separating from the advancing side of
the sphere. At Ω∗ =0.80, the shear layer separating from the advancing side shows
some waviness, and this precedes it rolling up to form a series of concentrated
vorticity patches. At the time instant shown, these patches occur near z = 5.5 and
z = 7.5 and coincide with the locations at which shed hairpin structures intersect the
symmetry plane. Unlike the structures shed at lower rotation rates, which appear to
scale with the diameter of the sphere, these structures scale with the thickness of the
shear layer. For Ω∗ = 1.00, the roll-up of the shear layer occurs further upstream,
and the patches of vorticity released downstream are stronger. As these structures
propagate downstream they grow and become more diffused. This second transition
to vortex shedding works to redistribute the shear layer vorticity, which becomes
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Figure 14. Effect of symmetry breaking perturbation for Re = 300 and Ω∗ = 1.00. The time
sequence begins with the statistically steady flow for transversely rotating sphere at t∗ =300.0.
This is followed by streamwise rotation for 300.0 < t∗ � 322.5 and transverse rotation for
t∗ > 322.5. Vortical structures are identified by plotting isosurfaces of λ2 = − 8 × 10−4.

increasingly concentrated as the rotation rate and Reynolds number are increased.
These features combine to suggest that the mechanism driving the unsteadiness is a
Kelvin–Helmholtz instability of the shear layer separating from the advancing side
of the sphere.

Over the Reynolds number and rotation rates tested, the wake maintains a planar
symmetry normal to the sphere rotation axis. To verify that this symmetry plane
is physical and not an artefact of the numerical method, a number of symmetry-
breaking perturbations were introduced. Figure 14 illustrates a symmetry-breaking
test applied to the case of Re = 300 and Ω∗ =1.00. The highest Reynolds number
simulated is presented here because it is expected to be the most sensitive to symmetry-
breaking perturbations. The time sequence begins with the statistically steady flow
for a transversely rotating sphere at non-dimensional time t∗ = 300.0, followed by an
impulsive change to streamwise rotation for 300.0 < t∗ < 332.5. This gross perturbation
breaks the planar symmetry, and structures spiral about the streamwise axis as they
are convected downstream, in a fashion similar to the wake structures computed by
Kim & Choi (2002) for a sphere undergoing steady streamwise rotation. Once rotation
in the transverse sense is impulsively restored at t∗ = 332.5, the wake symmetry plane
is quickly re-established without hysteresis. Quantitatively, the symmetry of the wake
can be ascertained by monitoring the zeroth azimuthal mode of uφ . The zeroth
azimuthal mode ûφ (k = 0) can be regarded as the average azimuthal velocity and
should be zero if planar symmetry exists. Figure 15 presents the time history of
ûφ (k = 0) at two stations in the wake, and it illustrates that once transverse rotation
is restored the symmetry plane is re-established. Such tests have indicated that the
flow symmetry plane is physical.

3.4. Force coefficients

In the modelling of particulate flows the forces experienced by a particle are of interest.
The time-averaged total, pressure and viscous components of the drag coefficient, CD ,



Wake structure of a transversely rotating sphere 123

250 300 350 400 450

100

10–1

10–2

10–3

10–4

t*

uφ (k = 0)

(r, θ) = (1.44, π/18)
(r, θ) = (5.01, π/18)

ˆ

Figure 15. Time history of azimuthal mode k = 0 of uφ at (r, θ ) = (1.51, π/18) and
(6.10, π/18).

and lift coefficient, CLy , are presented versus Ω∗ in figures 16 and 17; CLx is omitted
because the flow maintains a symmetry about the (y, z)-plane for all cases considered
and is therefore identically zero. Also presented are the total values computed by
Kurose & Komori (1999) for Re = 100 and Re = 300 and Niazmand & Renksizbulut
(2003) for Re = 100, 250 and 300.

For all three Reynolds numbers the viscous component of CD remains relatively
constant with increasing Ω∗, while the pressure component sees a gradual increase.
With increasing Reynolds number the total drag is reduced, while the pressure
component comprises a greater percentage of the total drag coefficient. For Re = 250
and Re =300, the drag coefficients computed by Kurose & Komori (1999) and
Niazmand & Renksizbulut (2003) show good agreement with the present study, while
for Re = 100 these studies predict lower values. Good agreement for CLy is found only
in the vicinity of Ω∗ = 0. With increasing Ω∗, the current study predicts increasingly
higher values of the CLy .

The peak-to-peak fluctuating components of the drag coefficient, �CD , and lift
coefficient, �CLy , are shown in figure 18. With increasing Ω∗ both �CD and �CLy

increase towards a maximum in the vicinity Ω∗ = 0.20, before decreasing to zero
for Ω∗ > 0.30. This increase and subsequent decrease in the oscillatory amplitudes
coincides with the expansion and contraction of the wake structures presented in
§§ 3.2 and 3.3. For both Reynolds numbers, �CLy attains a maximum which is
approximately a factor of four greater than �CD . Both �CLy and �CD attain maxima
which increase by approximately a factor of two between Re = 250 and Re = 300. At
Re =300, the force coefficients also undergo small periodic oscillations for Ω � 0.80,
with the amplitude increasing at Ω∗ =1.00. In the previous section it was found that
in the second vortex shedding regime, the near wake resembles that at lower rotation
rates, where the wake is steady. The lack of activity in the near wake explains these
relatively low-amplitude oscillations in this second shedding regime.
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component. � Kurose & Komori (1999); ∇ Niazmand & Renksizbulut (2003); � present
study using the boundary conditions of Kurose & Komori (1999).
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Figure 19. Vortex shedding Strouhal number, St , versus Ω∗: • present study at
Re = 250; • present study at Re = 300; �, present study at Re = 300, using the boundary
conditions of Kurose & Komori (1999); ∇ Niazmand & Renksizbulut (2003) at Re = 250;

∇ Niazmand & Renksizbulut (2003) at Re = 300; � Kurose & Komori (1999)
at Re = 300.

It was inferred from the wake structures presented in § 3.3 that the dominant
frequency of oscillation increases with Ω∗. Figure 19 presents the vortex shedding
Strouhal number, St , versus Ω∗ for Re = 250 and Re = 300; St was computed from
the power spectrum of the CD and CLy time histories. For Re = 250 and Ω∗ = 0.05
and 0.08, the amplitude of oscillation decays; so St is estimated by directly measuring
the period of oscillation from the transient solution. The St , shows a relatively linear
increase with Ω∗, particularly for values of Ω∗ below the onset of wake shedding
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Figure 20. Velocity vectors on the surface of the sphere: (a) boundary condition implemented
by Kurose & Komori (1999) and Niazmand & Renksizbulut (2003); (b) boundary condition
implemented in the present study. The axis of rotation is normal to the page.

suppression. Although the flow, in the absence of rotation, is significantly different for
the two Reynolds numbers, the effect of rotation drives vortex shedding at a similar
frequency. Also shown in figure 19 are the shedding frequencies computed in the
studies of Kurose & Komori (1999) and Niazmand & Renksizbulut (2003).† Good
agreement is found only at low Ω∗, while the present study predicts an increasingly
higher shedding frequency as Ω∗ increases.

The discrepancy in the Strouhal number and the time-averaged force coefficients
presented earlier appears to be a result of differences in the velocity boundary
condition at the surface of the spinning sphere. Figure 20 compares the velocity
vectors on the surface of the sphere derived from the boundary condition defined by
(2.12)–(2.14) of Kurose & Komori (1999) and the boundary condition used in the
present study (2.5). In a cylindrical coordinate system (r, φ, z) the present boundary
condition at the sphere surface (2.5) can be expressed as

us = −Ωd

2
(sinφ cos θ êr + cosφ cos θ êφ − sin θ sinφ êz). (3.1)

By transforming the surface velocity profile in figure 20(a) into the coordinate system
used in this study, it becomes evident that it is the φ-component of (3.1) that has
been ignored. The resultant velocity boundary condition generates less circulation
for a given Ω∗ and explains the lower lift force coefficient, drag force coefficient
and Strouhal number predicted by Kurose & Komori (1999) and Niazmand &
Renksizbulut (2003). The lower circulation is also expected to delay vortex suppression
to higher Ω∗ and explains why Niazmand & Renksizbulut (2003) observed a sustained
periodic vortex shedding for Re = 250 and Ω∗ = 0.5, while Best (1998) and the present
study have found vortex shedding to be suppressed under these conditions. You et al.
(2003) also alluded to this problem. For Re =1.0 they found the lift coefficient to be
close to the value theoretically derived by Rubinow & Keller (1961) and noted that
Kurose & Komori (1999) reported a much lower value. For Re = 68.4 and Ω∗ =1.0,

† Niazmand & Renksizbulut (2003) do not present St , and so the shedding frequency is estimated
by measuring the period of oscillation from the lift coefficient histories.
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You et al. (2003) reported a lift coefficient of 0.79 and a drag coefficient of 1.73.
Good agreement is found with the present study, which finds a lift coefficient of 0.77
and a drag coefficient of 1.73.

The boundary condition used by Kurose & Komori (1999) and Niazmand &
Renksizbulut (2003) was introduced into the solver used in the present study and
tested for Ω∗ = 0.25 and Re = 100 and 300. The force coefficients computed for these
cases are included in figures 16 and 17, while the vortex shedding Strouhal number
for Re = 300 and Ω∗ = 0.25 is included in figure 19. For both Reynolds numbers good
agreement is found between the force coefficients derived from these simulations and
the values computed by Kurose & Komori (1999) and Niazmand & Renksizbulut
(2003). Good agreement is also found between the Strouhal number derived for
Re = 300 and Ω∗ = 0.25 and the value computed by Niazmand & Renksizbulut
(2003).

4. Summary and concluding remarks
The uniform flow past a sphere in steady transverse rotation is studied numerically

for the Reynolds numbers 100, 250 and 300. The primary objective was to reveal
the structure of the wake flow over the range of rotational speeds Ω∗ =0.00 to 1.00,
where Ω∗ is the maximum velocity on the sphere surface normalized by the free
stream velocity.

As the rotation rate is increased, the relative free stream-to-surface velocity is
increased on the advancing side of the sphere and decreased on the retreating side.
As a result, free stream fluid becomes increasingly vectored over the lee side of the
sphere, and the volume of the recirculating region is progressively reduced until it
is completely destroyed for rotation rates higher than Ω∗ =0.30 to 0.50. On the
advancing side the higher relative velocity leads to a progressive intensification of the
shear layer separating from this side of the sphere. These processes have different
effects on the global wake structure, depending on the Reynolds number.

At Re = 100 the initially axisymmetric wake undergoes a transition to a double-
threaded structure. As the rotation rate is increased a greater circulation is generated,
which leads to the intensification of the threads. However, the flow remains steady.
At Re = 250 sphere rotation triggers a transition to a vortex shedding regime
characterized by the shedding of vortex loops at a single shedding frequency. Vortex
shedding is often described as a process of ‘build-up and release’ of the fluid within
the recirculating wake. As the wake is reduced in volume, this process must occur
on a faster time scale, such that the vortex shedding Strouhal number increases. At
higher rotation rates, the recirculating wake is completely absent, and the conditions
necessary for vortex shedding are eliminated. The wake then resembles the double-
threaded structure found at Re =100.

At Re = 300 the wake of a stationary sphere is unsteady. As the rotation rate
is increased beyond a critical value, vortex shedding is suppressed via the same
mechanism found for Re = 250. In this case, the shedding of vortical structures returns
for Ω∗ � 0.80 albeit in a different form. Unlike the shedding process at lower rotation
rates, the discrete vortical structures originate from the roll-up of vorticity along the
intense shear layer separating from the advancing side of the sphere. The absence
of such an instability at lower Reynolds numbers is congruent with the instability
mechanism being of the Kelvin–Helmholtz type. To the authors’ knowledge, this
second transition has never been observed before. These findings provide important



Wake structure of a transversely rotating sphere 129

information towards understanding the process of turbulence enhancement resulting
from the presence of solid particles in a fluid.

The simulation of particulate-laden flows requires an accurate description of the
forces experienced by the solid particles. At moderate Reynolds numbers, accurate
experimental measurements are difficult due to the small loads experienced by the
sphere and the presence of supporting devices. These issues are not present in
numerical simulation; however, it was discovered that previous numerical studies in
the range Re = 100 to Re = 300 had incorrectly specified the boundary conditions
on the sphere surface. In light of this the present study constitutes the first accurate
numerical investigation of the forces experienced by a transversely rotating sphere in
the Reynolds number range 100 to 300.

The material presented draws on work completed at the University of Melbourne as
part of the PhD thesis of M. Giacobello. M. Giacobello would like to acknowledge the
support of J. Drobik of the Defence Science and Technology Organisation (DSTO) for
this work. The authors would like to acknowledge the many useful suggestions received
from Professor M. S. Chong on this work. Thanks also go to Professor K. Dongjoo
and Professor H. Choi for providing data used in the validation of the code. The
authors would also like to express their gratitude to the Victorian Partnership for
Advanced Computing (VPAC) and Australian Partnership for Advanced Computing
(APAC) for providing the computing resource necessary in this study.
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